Corrigés de la série n° 2

Exercice 1 :

1. Du fait que $f(x)$ soit positive, on doit avoir $c(1 - x^k) > 0$.
 Comme $1 - x^k \geq 0$ car $x \in [0, 1]$ et $k \in \mathbb{N}^*$, on a $c > 0$.
 La relation $\int_{-\infty}^{+\infty} f(x)dx = 1$ entraîne $c \int_0^1 (1 - x^k)dx = 1$ ou $c = \frac{k+1}{k}$.
 Pour tout couple (c, k) lié par la relation précédente, c'est-à-dire $(\frac{k+1}{k}, k); k \in \mathbb{N}^*$, la fonction $f(x)$ définit une densité de probabilité.
 On peut énumérer les couples $(2,1); (\frac{3}{2}, 2); \cdots; (\frac{n+1}{n}, n); \cdots$

2. Si $k = 2$,
 $f(x)$ s'écrit
 $$f(x) = \begin{cases}
\frac{3}{2}(1 - x^2) & \text{si } 0 \leq x < 1 \\
0 & \text{sinon}
\end{cases}$$

et $P \left(X > \frac{1}{2} \right) = \int_{\frac{1}{2}}^{\infty} f(x)dx = \frac{3}{2} \int_{\frac{1}{2}}^{1} (1 - x^2)dx = 0, 31$

Exercice 2 :

1. Du fait que f soit positive, on doit avoir $k > 0$.
 La relation $\int_{-\infty}^{+\infty} f(x)dx = 1$ donne $k \int_0^1 \frac{dx}{\sqrt{1-x^2}} = 1$
 ou $k \text{Arcsin } 1 = 1$ c'est-à-dire $k = \frac{2}{\pi}$.

2. La fonction de répartition F de cette v.a. X est :
 $$F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)dt$$
 $$= \frac{2}{\pi} \int_0^x \frac{dt}{\sqrt{1-t^2}}$$

Donc :
 $$F(x) = \begin{cases}
0 & \text{si } x < 0 \\
\frac{2}{\pi} \text{Arcsin } x & \text{si } 0 \leq x < 1 \\
1 & \text{si } x \geq 1
\end{cases}$$

Exercice 3 :
On note f_X la densité de probabilité de la v.a. X qui est :
 $$f_X(x) = \begin{cases}
\frac{1}{2} & \text{si } -1 \leq x \leq 1 \\
0 & \text{sinon}
\end{cases}$$
1. Soit $Y = -2X + 1$. On a vu dans la 2ème question de l’exercice 7, de la série 1, que si X est une v.a., alors $Y = aX + b$ avec $a, b \in \mathbb{R}$ est aussi une v.a.

Ici on a $a = -2$ et $b = 1$, même raisonnement $Y = -2X + 1$ est aussi une v.a.; on peut écrire : $\{Y \leq x\} = \{-2X + 1 \leq x\} = \{X \geq \frac{1 - x}{2}\} = \{X < \frac{1 - x}{2}\}^c \in$ tribu considérée, (car X est une v.a.).

Déterminons f_Y sa densité de probabilité. On a $Y = g(X)$ avec $g(x) = -2x + 1$ qui est une application bijective. D’où

$$f_Y(y) = f_X \left(g^{-1}(y) \right) \left| \left(g^{-1}(y) \right)' \right|$$

On a : $g^{-1}(y) = \frac{1 - y}{2}$, alors $(g^{-1}(y))' = -\frac{1}{2}$ et $f_X(g^{-1}(y)) = \frac{1}{2}$ si $-1 \leq \frac{1 - y}{2} \leq 1$, i.e., $f_X(g^{-1}(y)) = \frac{1}{2}$ si $-1 \leq y \leq 3$. Donc :

$$f_Y(y) = \begin{cases} \frac{1}{4} & \text{si } -1 \leq y \leq 3 \\ 0 & \text{sinon} \end{cases}$$

2. Déterminons f_Z la densité de probabilité de $Z = X^2$. D’abord, Z est bien une v.a. car $\{X^2 \leq x\} = \{-\sqrt{x} \leq X \leq \sqrt{x}\} \in$ la tribu considérée. $Z = X^2$, la transformation considérée ici, n’est pas bijective, donc, on ne peut pas utiliser la formule que l’on a utilisé dans la question précédente. Alors, on déterminera, d’abord, la fonction de répartition F_Z et on la dérive, par la suite, pour trouver la densité f_Z.

Comme la fonction de répartition F_X de la v.a. X est :

$$F_X(x) = \begin{cases} 0 & \text{si } x < -1 \\ \frac{x + 1}{2} & \text{si } -1 \leq x \leq 1 \\ 1 & \text{si } x > 1 \end{cases}$$

On a : $F_Z(z) = P(Z \leq z) = P(X^2 \leq z)$

* Si $z \leq 0$, alors $F_Z(z) = 0$.

* Si $z > 0$, on trouve $F_Z(z) = P(-\sqrt{z} \leq X \leq \sqrt{z})$

$$= F_X(\sqrt{z}) - F_X(-\sqrt{z})$$

si $z \leq 1$, on a $F_Z(z) = \frac{\sqrt{z} + 1}{2} - \frac{\sqrt{z} + 1}{2} = \sqrt{z}$

si $z > 1$, on a $F_Z(z) = 1 - 0 = 1$

d’où

$$F_Z(z) = \begin{cases} 0 & \text{si } z \leq 0 \\ \sqrt{z} & \text{si } z \in [0, 1] \\ 1 & \text{si } z > 1 \end{cases}$$

On en déduit la fonction de densité de probabilité de Z :

$$f_Z(z) = \begin{cases} 0 & \text{si } z \notin [0, 1] \\ \frac{1}{2\sqrt{z}} & \text{si } z \in [0, 1] \end{cases}$$

Exercice 4 :

La fonction de répartition de X est : $F(x) = \int_{-\infty}^{x} f(x) \, dx$

$$F_X(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ \frac{z}{a} & \text{si } 0 < x \leq a \\ 1 & \text{si } x > a \end{cases}$$
1. Déterminons \(f_Y \) la fonction de densité de probabilités de la v.a. \(Y = X^2 \)
Soit \(y \in \mathbb{R} ; P(Y \leq y) = P(X^2 \leq y) \)
\(\begin{align*}
\text{si } y < 0 ; & \quad P(Y \leq y) = P(X \leq -\sqrt{y}) = F(\sqrt{y}) - F(-\sqrt{y}) \\
\text{si } y \geq 0 ; & \quad P(Y \leq y) = P(X \leq \sqrt{y}) = F(\sqrt{y})
\end{align*} \)

Donc
\[
F_Y(y) = \begin{cases}
\frac{\sqrt{y}}{\alpha} & \text{si } 0 < y \leq \alpha^2 \\
1 & \text{si } y \geq \alpha^2
\end{cases}
\]

D'où
\[
f_Y(y) = \begin{cases}
\frac{2y}{\alpha \sqrt{y}} & \text{si } 0 < y \leq \alpha \\
0 & \text{ailleurs}
\end{cases}
\]

2. De même, pour \(Z = \sqrt{X} \).
Soit \(z \geq 0, F_Z(z) = P(Z \leq z) = P(X \leq z^2) = F(z^2) \)
Donc \(f_Z(z) = 2zF'_X(z^2) = 2zf_X(z^2) \)
D'où
\[
f_Z(z) = \begin{cases}
\frac{2z}{\alpha} & \text{si } 0 < z \leq \sqrt{\alpha} \\
0 & \text{ailleurs}
\end{cases}
\]

Exercice 5 :

1. Pour que \(f \) soit une densité de probabilité, il faut que \(f(x) \geq 0, \forall x \in \mathbb{R}^+ \) et \(\int_{-\infty}^{+\infty} f(x)dx = 1 \).
Alors il faut que \(\alpha > 0 \) et \(\int_{-\infty}^{+\infty} f(x)dx = \int_0^{\alpha^2} \alpha xdx + \int_{\alpha^2}^{\alpha} \alpha(a-x)dx = 1 \)
c'est-à-dire, il faut que \(\alpha \left[\frac{x^2}{2} \right]_0^{\alpha^2} + \alpha a \left[x \right]_{\frac{a}{2}}^{a} - \alpha \left[\frac{x^2}{2} \right]_{\frac{a}{2}}^{a} = 1 \)
et on trouve \(\alpha = \frac{4}{a^2} \)

2.
\[
\begin{align*}
P \left(X > \frac{a}{2} \right) &= \alpha \int_{\frac{a}{2}}^{a} (a-x)dx \\
&= \frac{4}{a^2} \left(a(a - \frac{a}{2}) - \left[\frac{x^2}{2} \right]_{\frac{a}{2}}^{a} \right) = \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
P \left(\frac{a}{2} - b < X \leq \frac{a}{2} + b \right) &= \int_0^{\frac{a}{2} + b} f(x)dx - \int_0^{\frac{a}{2} - b} f(x)dx \\
&= \int_0^{\frac{a}{2}} f(x)dx + \int_{\frac{a}{2}}^{\frac{a}{2} + b} f(x)dx - \int_{\frac{a}{2} - b}^{\frac{a}{2}} f(x)dx \\
&= \int_{\frac{a}{2} - b}^{\frac{a}{2}} f(x)dx + \int_{\frac{a}{2}}^{\frac{a}{2} + b} f(x)dx \\
&= \alpha \left(\int_{\frac{a}{2} - b}^{\frac{a}{2}} xdx + \int_{\frac{a}{2}}^{\frac{a}{2} + b} (a-x)dx \right)
\end{align*}
\]
Soit le changement de variable \(y = a - x \), dans la 2\(\text{ème} \) intégrale

\[
P\left(\frac{a}{2} - b < X \leq \frac{a}{2} + b \right) = \alpha \left(\int_{\frac{a}{2} - b}^{\frac{a}{2}} x \, dx - \int_{\frac{a}{2}}^{\frac{a}{2} - b} y \, dy \right) = 2\alpha \int_{\frac{a}{2} - b}^{\frac{a}{2}} x \, dx = 2\alpha \left[\frac{x^2}{2} \right]_{\frac{a}{2} - b}^{\frac{a}{2}}
\]

\[= ab(a - b) = \frac{4b(a - b)}{a^2}\]

3. On a : \(P(A \cap B) = P\left(\frac{a}{2} < X \leq \frac{a}{2} + b \right) \)

\[= \alpha \int_{\frac{a}{2}}^{\frac{a}{2} + b} (a - x) \, dx \]

Soit, par changement de variable \(y = a - x \)

\[P(A \cap B) = \alpha \int_{\frac{a}{2}}^{\frac{a}{2} + b} y \, dy = \alpha \left[\frac{x^2}{2} \right]_{\frac{a}{2}}^{\frac{a}{2} + b} \]

Ce qui démontre que l’on a : \(P(A \cap B) = P(A) \cdot P(B) \), c’est-à-dire que les événements \(A \) et \(B \) sont indépendants.

Exercice 6 :

D’une manière générale, \(F \) est une fonction de répartition d’une v.a. \(X \) définie par \(F(x) = P(X \leq x) \), \(\forall x \in \mathbb{R} \) si, et seulement si, elle a les propriétés suivantes :

- \(F \) est non-décroissante.
- \(F \) est continue à droite en tout point \(x \) de \(\mathbb{R} \).
- \(\lim_{x \to -\infty} F(x) = 0 \) et \(\lim_{x \to +\infty} F(x) = 1 \)

Vériions si ces conditions sont vérifiées pour les fonctions \(F \) et \(H \) données.

1. La fonction \(F \) donnée par :

\[
F(x) = \begin{cases}
1 - \frac{e^{-x}}{2} & \text{si } x \geq 0 \\
0 & \text{si } x < 0
\end{cases}
\]

* Sa dérivée est :

\[
F'(x) = \begin{cases}
\frac{e^{-x}}{2} & \text{si } x \geq 0 \\
0 & \text{si } x < 0
\end{cases}
\]

Donc \(F'(x) \geq 0 \), d’où \(F \) est non-décroissante.

* \(\forall \alpha \in \mathbb{R}^* \); on a : \(\lim_{x \to \alpha} F(x) = F(\alpha) \iff F \) est continue en \(\alpha ; \alpha \neq 0 \).

pour \(\alpha = 0 \), on a : \(\lim_{x \to 0^-} F(x) = 0 \neq F(0) = 1 - \frac{1}{2} = \frac{1}{2} \)

\[
\lim_{x \to 0^+} F(x) = \frac{1}{2} = F(0)
\]

Donc \(F \) est continue à droite de zéro, mais discontinu à gauche de zéro.

* \(\lim_{x \to -\infty} F(x) = \lim_{x \to +\infty} F(x) = 0 \)

\[
\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \left(1 - \frac{e^{-x}}{2} \right) = 1 - 0 = 1
\]

Donc \(F \) est bien une fonction de répartition d’une certaine v.a.
2. La fonction H définie par :

$$H(y) = \begin{cases}
1 & \text{si } y > 0 \\
0 & \text{si } y \leq 0
\end{cases}$$

On vérifie de même que :

- H est non-décroissante.
- H est continue en tout point $\alpha \in \mathbb{R}^*$

Pour $\alpha = 0$, on a $\lim_{y \to 0^-} H(y) = 0 = H(0)$

$$\lim_{y \to 0^+} H(y) = 1 \neq 0 = H(0)$$

Donc H est continue à gauche de zéro, mais discontinue à droite de zéro.

D’où H ne peut être considérée comme une fonction de répartition et ceci malgré que l’on ait : $\lim_{y \to 0^-} H(y) = 0$ et $\lim_{y \to 0^+} H(y) = 1$.

Exercice 7 :
La fonction $g(x) = ax + b$ est dérivable et sa dérivée garde un signe constant pour tout x, on peut, donc appliquer la formule $h(y) = f \left(g^{-1}(y) \right) \left| (g^{-1}(y))' \right|$ où h est la densité de probabilité de la variable $Y = ax + b$.

La fonction inverse $g^{-1}(y)$ se calcule en résolvant l’équation $y = ax + b$ par rapport à x ; on obtient $g^{-1}(y) = \frac{y-b}{a}$. D’après le calcul $(g^{-1}(y))' = \frac{1}{a} \; \left| (g^{-1}(y))' \right| = \frac{1}{|a|}$. D’où $h(y) = \frac{1}{|a|} f \left(\frac{y-b}{a} \right)$.