Contrôle Continu de Maths I

Durée 1 heure

Problème nº 1 :

On considère la fonction f définie par :

$$
\begin{cases}
 f(x) = \frac{x^2}{2 - \sqrt{4 + x^2}} & \text{si } x \neq 0 \\
 f(0) = a
\end{cases}
$$

Où a est un paramètre réel.

1) Pour quelle(s) valeur(s) de a, f est continue en 0 ?
2) Calculer $\lim_{x \to +\infty} f(x)$.

Problème nº 2 :

Soit (V_n) une suite arithmétique de raison r et de premier terme V_1.

Soit (U_n) une suite numérique définie par :

$$U_n = e^{V_n} \quad \text{Pour tout } n \text{ entier naturel non nul}$

(où e^{V_n} désigne l’exponentielle népérienne de V_n).

1) Vérifier que (U_n) est une suite géométrique dont il faudra préciser les caractéristiques, c’est-à-dire son premier terme U_1 et sa raison q, en fonction de V_1 et r.
2) Donner la somme $S_n=U_1+U_2+\ldots+U_n$ en fonction de V_1, r et n.
3) Préciser les valeurs de r pour lesquelles la somme S_n admet une limite quand n tend vers $+\infty$.
Problème n°1 :
1. \(f \) continue en 0 \(\iff \lim_{x \to 0} f(x) = f(0) = a \)

\[
f(x) = \frac{x^2}{2 - \sqrt{4 + x^2}} = \frac{x^2(2 + \sqrt{4 + x^2})}{-x^2} = -\left(2 + \sqrt{4 + x^2}\right)
\]

D'où \(\lim_{x \to 0} f(x) = -4 \)

Donc \(f \) est continue en 0 \(\iff f(0) = -4 \)
\(\iff a = -4 \)

2. \(\lim_{x \to -\infty} f(x) = ? \)

\[
f(x) = \frac{x^2}{2 - \sqrt{4 + x^2}} = \frac{x^2}{-x} = -x
\]

D'où \(\forall x \in]-\infty,0[; \ |x| = -x \)

et \(\lim_{x \to -\infty} \frac{x}{2 + \frac{4}{\sqrt{x^2} + 1}} = -\infty \)

Problème n°2 :
1) \(U_n = e^{V_n} \)

\[
U_{n+1} = e^{V_{n+1}} = e^{V_n + r} = e^{V_n} \cdot e^r
\]

\[
U_{n+1} = U_n \cdot e^r \quad \forall n \in \mathbb{N}^*
\]

D'où \(\left(U_n\right) \) est une suite géométrique de raison \(q = e^r \) et de premier terme \(U_1 = e^{V_1} \)

2) D’après le cours \(S_n = U_1 \frac{1-q^n}{1-q} \) si \(q \neq 1 \)

\[
S_n = e^{V_1} \frac{1-(e^r)^n}{1-e^r} \quad \text{si} \quad r \neq 0
\]

Si \(r = 0 \) alors
\(S_n = U_1 + U_2 + \cdots + U_n = e^{V_1} + e^{V_1} + \cdots + e^{V_i} = ne^{V_i} \)

Limite de \(S_n \) quand \(n \to +\infty \):

\[
\lim_{n \to +\infty} S_n = e^{V_1} \lim_{n \to +\infty} \frac{1-(e^r)^n}{1-e^r}
\]
Or \((e^r)^n \xrightarrow[n \to +\infty]{} \begin{cases} 1 & \text{si } r = 0 \\ +\infty & \text{si } r > 0 \\ 0 & \text{si } r < 0 \end{cases} \)

Alors :

Si \(r = 0 \), \(\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} ne^{Vi} = +\infty \)

Si \(r > 0 \), \(\lim_{n \to +\infty} S_n = \frac{e^{Vi}}{1-e^r} \cdot (-\infty) = +\infty \)

Si \(r < 0 \), \(\lim_{n \to +\infty} S_n = e^{Vi} \cdot \frac{1}{1-e^r} = e^{Vi} \)

Conclusion :

\(S_n \) admet une limite quand \(n \to +\infty \) pour \(r < 0 \) et dans ce cas on a :

\[
\lim_{n \to +\infty} S_n = \frac{e^{Vi}}{1-e^r}
\]

3) \(V_i = 0 \) et \(r = -1 \)

\[
U_n = e^{Vi} = e^{[Vi + (n-1)r]}
\]

\[
= e^{Vi} (e^r)^{(n-1)}
\]

\[
= e^0 \cdot (e^{-1})^{(n-1)} = e^{1-n}
\]

Dans ce cas : \(r = -1 < 0 \)

\[
S_n = e^{Vi} \cdot \frac{1-(e^r)^n}{1-e^r}
\]

Donc

\[
S_n = \frac{1-e^{-n}}{1-e^{-1}}
\]

\[
\lim_{n \to +\infty} S_n = \frac{1}{1-e^{-1}} \quad (\text{car } e^{-n} = \frac{1}{e^n} \xrightarrow[n \to +\infty]{} 0).
\]